KARNATAKA RADIOLOGY EDUCATION PROGRAM #### **CASE PRESENTATION** Case of neuronal ceroid Lipofuscinoses VS spinocerebellar ataxia MENTOR: DR.RAJENDRA MALI KAHER UNIVERSITY J.N.MEDICAL COLLEGE, BELAGAVI ### Case -1 - 20 year old male patient with complaints of inability to walk for 8 years. - Birth history: normal - On clinical examination ataxia was present - No history of visual disturbance T2 axial FLAIR axial T2 coronal T2 axial FLAIR axial ### Findings: - Symmetrical T2 & FLAIR hyperintensities noted in periventricular and peritrigonal regions - T2 & FLAIR hypointensities in bilateral thalami - Prominent cerebellar foliae (cerebellar atrophy) - Atrophy of middle cerebellar peduncle - T2 & FLAIR hyperintensity involving dentate nuclei ### **DIFFERENTIALS** - Neuronal ceroid lipofuscinosis - Spinocerebellar ataxia # Neuronal ceroid lipofuscinosis | <u>POINTS IN FAVOUR</u> | POINTS AGAINST THE DIAGNOSIS | |--|------------------------------| | Symmetrical periventricular hyperintensities | Absence of visual symptoms | | T2/FLAIR hypointensity of thalami | | | Cerebellar atrophy | | | Hyperintensity of dentate nuclei | | | NCL Type | Typical Onset | MRI Findings | Differential Features | |---|---------------|--|---| | CLN1 (Infantile NCL) | 6–24 months | - Diffuse cerebral atrophy(early) - Thinning of corpus callosum - Delayed/diminished myelination - Cerebellar atrophy (later) | Early, rapid cerebral atrophy in infancy is a key differentiator. | | CLN2 (Late Infantile
NCL) | 2–4 years | - Periventricular white matter hyperintensities - Progressive cerebral and cerebellar atrophy - Thalami hypointensity on T2 - May show subcortical U-fiber sparing | Thalamic T2 hypointensity is more specific; cerebellar atrophy appears early. | | CLN3 (Juvenile NCL /
Batten Disease) | 4–7 years | Progressive cerebral and cerebellar atrophy Occipital lobe atrophy is common Thalami and basal ganglia volume loss | Occipital atrophy and visual loss precede generalized atrophy. | | NCL Type | Typical Onset | MRI Findings | Differential Features | |--|----------------------|---|---| | CLN5 (Variant Late
Infantile NCL) | 4–10 years | - Cerebral and
cerebellar atrophy
- Thalamic and
brainstem involvement
(variable) | Imaging overlaps with CLN2 but onset is later and less rapid. | | CLN6 (Variant Late
Infantile / Juvenile
NCL) | Variable (childhood) | Similar to CLN2/CLN5 Cerebral and cerebellar atrophy Periventricular white matter changes | Diagnosis is often clinical-genetic; imaging overlaps with CLN2 and CLN5. | | CLN7 (MFSD8-related) | Childhood | Diffuse cortical and cerebellar atrophy Corpus callosum thinning Hypomyelination | Resembles CLN2/CLN6;
gene testing needed to
differentiate. | | NCL Type | Typical Onset | MRI Findings | Differential Features | |-------------------------------------|-------------------------------|---|---| | CLN8 (Northern
epilepsy variant) | Late infantile / Juvenile | Mild or slow-progressing brain atrophy May show cortical thinning, especially in parietal and occipital regions | Slower progression than CLN2; neurocognitive symptoms may precede imaging changes. | | Adult NCL (e.g., CLN4) | Late adolescence to adulthood | Mild cerebral atrophy Cortical signal abnormalities (variable) Basal ganglia changes may be present | Less specific findings;
diagnosis often relies on
clinical and genetic
data. | # Spinocerebellar ataxia | POINTS IN FAVOUR | POINTS AGAINST THE DIAGNOSIS | |------------------------------------|--| | Cerebellar atrophy | Lack of extensive white matter changes | | Middle cerebellar peduncle atrophy | Thalamic hypointensity | | | Normal brainstem | | | No history of visual disturbance | CASE OF SCA: Brain stem and cerebellum atrophy are clearly visible from the onset of clinical manifestations. With the evolution of the disease, there is an increase mainly in cortical and cerebellar atrophy. # Follow up Patient was given multivitamin tablets and managed out patient basis